ANTICHAINS AND PRODUCTS IN PARTIALLY ORDERED SPACES(1)

BY E. D. TYMCHATYN

1. Introduction. By a partially ordered space X we mean a Hausdorff space X with a partial order which is closed when regarded as a subset of $X \times X$. In this paper X will denote a compact partially ordered space. The symbol 2^X will denote the space of compact subsets of X with the finite topology [3]. This topology has as a basis all finite tuples $\langle V_1, \ldots, V_n \rangle$ where each V_i is an open subset of X. A closed subset A of X is in $\langle V_1, \ldots, V_n \rangle$ if A meets V_i for each i and if $A \subset V_1 \cup \cdots \cup V_n$. The space 2^X is compact and Hausdorff. If X is metric then 2^X is metric and the finite topology on 2^X is the topology induced by the Hausdorff metric.

For each $x \in X$ we let

$$L(x) = \{ y \in X \mid y \le x \}, \qquad M(x) = \{ y \in X \mid x \le y \}$$

and $\Gamma(x) = L(x) \cup M(x)$. If $A \subseteq X$ we let $L(A) = \bigcup \{L(x) \mid x \in A\}$. We define M(A) and $\Gamma(A)$ similarly. We let $L = \{x \in X \mid L(x) = \{x\}\}$ and we let

$$M = \{x \in X \mid M(x) = \{x\}\}.$$

We call L (resp. M) the set of minimal (resp. maximal) elements of X.

A chain is a totally ordered set. An order arc is a compact and connected chain. It is easy to check that a nondegenerate and separable order arc is homeomorphic to the unit interval. An antichain is a totally unordered set. It is known [5] that each chain is contained in a maximal chain. Each maximal chain is a closed set which meets both L and M. Thus L and M are maximal antichains.

Let X be a compact metric partially ordered space such that for each $x \in X$ $\Gamma(x)$ is connected. We prove that the family of compact maximal antichains of X covers X if and only if L and M are closed. The family of compact maximal antichains of X admits the structure of a topological lattice. If L and M are closed and the maximal chains of X are pairwise disjoint order arcs we prove that X is homeomorphic to $M \times [0, 1]$ (the Cartesian product). We study the role of those partially ordered spaces in which the maximal chains are pairwise disjoint. In §5 we use these results to get a characterization of the 2-cell.

We shall need the following theorem which is due to R. J. Koch. This theorem also appears in [6].

Received by the editors May 6, 1969.

⁽¹⁾ This research was supported in part by a grant from the National Science Foundation.

Copyright © 1970, American Mathematical Society

THEOREM 1.1 (KOCH). If X is a compact partially ordered space such that L is closed and for each $x \in X$, L(x) is connected, then each maximal order arc in X meets L.

DEFINITION 1.2. If X is a compact partially ordered space let $\mathcal{M}(X)$ denote the set of those order arcs in X which meet both L and M. We consider $\mathcal{M}(X)$ as a subspace of 2^x .

The next three lemmas appear in [7].

- LEMMA 1.3. If X is a compact partially ordered space then the family of compact chains of X is a compact subset of 2^x .
- LEMMA 1.4. Let X be a compact partially ordered space. If there exists a family \mathscr{C} of maximal chains of X such that $X \subset \bigcup \mathscr{C}$ and \mathscr{C} is a compact subset of 2^X then L and M are compact.
- LEMMA 1.5. If X is a compact partially ordered space such that L and M are closed then $\mathcal{M}(X)$ is a compact subset of 2^{x} .
- 2. The product theorem. We let [0, 1] denote the unit interval with its usual order.
- DEFINITION 2.1. If Y is a compact Hausdorff space we let P(Y) denote the space $Y \times [0, 1]$ with the product topology and with the partial order $(y, a) \le (x, b)$ if and only if y = x and $a \le b$. Then P(Y) is a compact partially ordered space.
- LEMMA 2.2. If X is a compact partially ordered space such that L is closed and for each $x \in X$, L(x) has a unique minimal element then L is a retract of X.
- **Proof.** For each $x \in X$ let $\pi(x)$ denote the unique minimal element of L(x). This defines a function $\pi: X \to L$ such that π leaves every element of L fixed.

We must show that π is continuous. Let $x \in X$ and let x_i be a net converging to x. Let z be a cluster point of the net $\pi(x_i)$. Then $z \in L(x)$ since the partial order on X is closed and $z \in L$ since L is closed. Hence $z = \pi(x)$ and π is continuous.

DEFINITION 2.3. A metric r for a partially ordered space X is radially convex if $x \le y \le z$ implies r(x, y) + r(y, z) = r(x, z).

The basic theorem about radially convex metrics is due to J. H. Carruth [1].

- THEOREM 2.4. Every compact, metric, partially ordered space X admits a radially convex metric.
- LEMMA 2.5. Let X be a compact partially ordered space which contains a compact maximal antichain C. If T is an order arc which meets both L and M then T meets C.
- **Proof.** Let $P = \{x \in T \mid x \in L(C)\}$ and let $Q = \{x \in T \mid x \in M(C)\}$. Then P and Q are closed. Since C is a maximal antichain $P \cup Q = T$. Now $T \cap L \subseteq P$ and $T \cap M \subseteq Q$. Since T is connected $P \cap Q$ is nonvoid. If $z \in P \cap Q$ then $z \in C$ since C is an antichain.

THEOREM 2.6. Let X be a compact metric partially ordered space such that L and M are compact subsets of X and for each $x \in X$, $\Gamma(x)$ is connected. Then there exists a continuous one-to-one function $f: [0, 1] \to 2^X$ such that

- (i) for each $a \in [0, 1]$ f(a) is a compact maximal antichain of X,
- (ii) if a < b in [0, 1] then $f(a) \subset L(f(b))$,
- (iii) f(0) = L and f(1) = M,
- (iv) $X \subset \bigcup \{f(a) \mid a \in [0, 1]\},\$
- (v) if $M \cap L$ is void and if a < b in [0, 1] then $f(a) \cap f(b)$ is void.

Proof.

Case 1. Suppose $M \cap L$ is void. Let Y be the compact Hausdorff space obtained from X by pinching L and M to points [2, p. 98]. Let π be the projection of X onto Y. Define a partial order on Y by setting $x \leq y$ in Y if and only if there exist $x' \in \pi^{-1}(x)$ and $y' \in \pi^{-1}(y)$ with $x' \leq y'$. Then Y is a compact metric partially ordered space with unique minimal element $\pi(L)$ and unique maximal element $\pi(M)$.

By Theorem 2.4, Y admits a radially convex metric r such that $r(\pi(L), \pi(M)) = 1$. For each $a \in [0, 1]$ let $B(a) = \{ y \in Y \mid r(\pi(L), y) = a \}$ and let $f(a) = \pi^{-1}(B(a))$.

Since r is a radially convex metric B(a) is an antichain in Y and f(a) is an antichain in X. By Koch's theorem f(a) is a maximal antichain. Since B(a) is compact and π is continuous, $f(a) = \pi^{-1}(B(a))$ is compact. Everything else is clear except that f is continuous.

Let a_i) be a sequence which converges to a in [0, 1]. Let x_i) be a sequence which converges to x in X such that for each i, $x_i \in f(a_i)$. Since π is continuous

$$r(\pi(x), \pi(L)) = \lim r(\pi(x_i), \pi(L)) = \lim a_i = a.$$

Hence $\pi(x) \in B(a)$ and $x \in f(a)$. Thus each cluster point in 2^x of the sequence $f(a_i)$ is contained in f(a). Let $x \in f(a)$. By Koch's theorem there exists an order arc T such that $x \in T$ and T meets both L and M. For each i, $f(a_i)$ meets T by Lemma 2.5. For each i let $y_i \in T \cap f(a_i)$ and let y be a cluster point of the sequence y_i). Since T is closed $y \in T$. By the above argument $y \in f(a)$. Since f(a) is an antichain y = x. Thus, the sequence $f(a_i)$ converges to f(a) in 2^x and f is continuous.

Case 2. Suppose $M \cap L$ is nonvoid. Make the disjoint union of P(L) and X into a partially ordered space by extending the partial orders on P(L) and X so that if $(n, a) \in P(L)$ and $x \in X$ then $(n, a) \leq x$ if and only if $n \leq x$ in X. Form the adjunction space X' of P(L) and X by identifying (n, 1) with n for each $n \in L$. The partial order on $X \cup P(L)$ induces a partial order \leq' on X' such that (X', \leq') satisfies all the hypotheses of the theorem. The set of minimal (resp. maximal) elements of X' is $L \times \{0\}$ (resp. M). We may apply Case 1 to the partially ordered space X' to obtain a continuous one-to-one function f': $[0, 1] \rightarrow 2^{X'}$ such that conditions (i)–(v) are satisfied. For each $a \in [0, 1]$ let

$$f''(a) = \{x \in f'(a) \cup L \mid x \text{ is maximal in } f'(a) \cup L\}.$$

Then f''(a) is a compact maximal antichain. Using f'' it is easy to define a continuous one-to-one function $f: [0, 1] \to 2^x$ such that conditions (i)-(iv) are satisfied.

COROLLARY 2.7. Let X be a compact metric partially ordered space such that L and M are closed subsets of X and for each $x \in X$, $\Gamma(x)$ is a nondegenerate order arc. Then X is homeomorphic under an order preserving map to P(M).

Proof. Let $f: [0, 1] \to 2^X$ be a one-to-one continuous function such that conditions (i)-(v) of Theorem 2.6 are satisfied. Define $h: P(M) \to X$ by letting $h(m, a) \in L(m) \cap f(a)$ for each $(m, a) \in P(M) = M \times [0, 1]$.

Let $(m, a) \in M \times [0, 1]$ and let (m_i, a_i) be a sequence converging to (m, a). Let z be a cluster point of $h(m_i, a_i)$. The sequence m_i converges to m in X. For each i $h(m_i, a_i) \in L(m_i)$. Since the partial order on X is closed $z \in L(m)$. Since the sequence $f(a_i)$ converges to f(a) in 2^X , $z \in f(a)$. Thus z = h(m, a) and f is continuous. By conditions (iv), (ii) and (v) of Theorem 2.6 h is onto X, one-to-one and order preserving. Since P(M) is compact and X is Hausdorff, h is a homeomorphism.

The hypotheses of Corollary 2.7 may be relaxed as follows:

THEOREM 2.8. Let X be a compact metric partially ordered space such that for each $x \in X$, $\Gamma(x)$ is a chain. If X contains a compact maximal antichain A then X may be embedded by an order preserving map into P(A).

Proof. By Theorem 2.4 there exists a radially convex metric r for X such that the diameter of X with respect to r is less than 1/2.

Define $g: X \to A$ by letting $g(x) \in \Gamma(x) \cap A$ for each $x \in X$. By Lemma 2.2 g is a retraction of X onto A.

Define $f: X \to P(A)$ as follows: For $x \in X$ let

$$f(x) = (g(x), 1/2 + r(x, g(x)))$$
 if $g(x) \le x$ and $f(x) = (g(x), 1/2 - r(x, g(x)))$ if $x \le g(x)$.

Since g is continuous and r is a metric for X, f is continuous. Because r is radially convex f is one-to-one and order preserving. Since X is compact and P(A) is Hausdorff, f is open.

The following theorem is the main result in this paper.

THEOREM 2.9. Let X be a compact metric partially ordered space such that L and M are closed and disjoint and for each $x \in X$, $\Gamma(x)$ is connected. There exists an order preserving map $g: P(\mathcal{M}(X)) \to X$ such that

- (a) for each $T \in \mathcal{M}(X)$, g maps the maximal chain $\{T\} \times [0, 1]$ of $P(\mathcal{M}(X))$ homeomorphically onto the maximal chain T of X,
 - (b) for each $y \in [0, 1]$, $g(\mathcal{M}(X) \times \{y\})$ is a compact maximal antichain of X, and
- (c) the function $f: [0, 1] \to 2^x$ defined by letting $f(y) = g(\mathcal{M}(X) \times \{y\})$ satisfies conditions (i)–(v) of Theorem 2.6.

Proof. Let $f: [0, 1] \to 2^x$ be a function which satisfies conditions (i)-(v) of Theorem 2.6. By Lemma 1.5, $\mathcal{M}(X)$ is a compact subset of 2^x . Define

$$g: P(\mathcal{M}(X)) \to X$$

by letting g(T, a) be the unique element in $T \cap f(a)$ for each $(T, a) \in P(\mathcal{M}(X))$.

Let (T_i, a_i) be a net in $P(\mathcal{M}(X))$ which converges to (T, a) and let z be a cluster point of the net $g(T_i, a_i)$). Since the nets T_i and $f(a_i)$ converge in 2^x to T and f(a) respectively, $z \in T \cap f(a)$ and g is continuous. Everything else is now clear from the definition of g.

We can prove analogous theorems for much more general situations.

THEOREM 2.10. Let X be a compact partially ordered space and let $\mathscr C$ be a compact family (in 2^x) of closed chains of X such that $X \subset \bigcup \mathscr C$. Let $g \colon Y \to \mathscr C$ be a continuous function from a compact Hausdorff space Y onto $\mathscr C$. There exists a compact partially ordered space

$$Y^* = \{(y, z) \mid y \in Y \text{ and } z \in g(y)\}$$

and an order preserving map f of Y* onto X such that

- (i) the maximal chains of Y* are pairwise disjoint,
- (ii) Y is homeomorphic to both the set of maximal elements of Y^* and to the set of minimal elements of Y^* , and
- (iii) for each $y \in Y$, f maps the maximal chain $\{(y, z) \mid z \in g(y)\}$ of Y^* homeomorphically onto the chain g(y) in X.

Theorem 2.10 is useful where \mathscr{C} can be taken to be a subset of $\mathscr{M}(X)$. If \mathscr{C} has a topological property P then one may be able to prove that Y^* and hence X has property P. Local connectedness and connectedness are two such properties. We shall give some more detailed examples in the next section.

Proof of 2.10. Let the set $Y \times X$ have the product topology and the partial order $(a, b) \le (c, d)$ if and only if a = c and $b \le d$. Then $Y \times X$ is a compact partially ordered space. Let $Y^* = \{(y, z) \in Y \times X \mid z \in g(y)\}$.

Let (y_i, z_i) be a net in Y^* which converges to (y, z). Then the net y_i converges to y in Y and the net z_i converges to z in X. Since g is continuous the net $g(y_i)$ converges to g(y) in 2^X . Hence $z \in g(y)$ and $(y, z) \in Y^*$. Thus Y^* with the relative topology and the partial order inherited from $Y \times X$ is a compact partially ordered space.

The maximal chains in Y^* are the sets $\{(y, z) \mid z \in g(y)\}$ where $y \in Y$. The set of maximal elements of Y^* is

$$\{(y, z) \mid y \in Y \text{ and } z \text{ is the maximal element of } g(y)\}.$$

Let (y_i, z_i) be a net of maximal elements of Y^* which converges to (y, z). As above, the net $g(y_i)$ converges to g(y) in 2^X and the net z_i converges to z in X. For each i, $g(y_i) \subset L(z_i)$. Since the partial order on X is closed $g(y) \subset L(z)$. Since

 $z \in g(y)$, z is the maximal element of g(y) in X. Hence, (y, z) is a maximal element of Y^* and the set of maximal elements of Y^* is compact.

Define a function $f: Y^* \to X$ by letting f(y, z) = z for each $(y, z) \in Y^*$. Then, f is continuous since f is the restriction to Y^* of the natural projection of $Y \times X$ onto X. The rest is now clear.

3. L-continuity. The partial order on X is said to be L-continuous if the function $f: X \to 2^x$ defined by f(x) = L(x) is continuous.

LEMMA 3.1 (WARD [6]). If the partial order on a compact partially ordered space X is L-continuous then L is closed.

We prove a partial converse to Lemma 3.1.

PROPOSITION 3.2. Let X be a compact partially ordered space. If L is closed and for each $x \in X$, L(x) is an order arc, then the partial order on X is L-continuous.

Proof. Let x_i) be a net which converges to x in X. Since 2^x is compact the net $L(x_i)$) has a cluster point A in 2^x . Since the partial order on X is closed $A \subset L(x)$. By a result in [3] A is connected. Clearly $x \in A$. For each i, $L(x_i) \cap L$ is nonvoid and L is closed. It follows that A meets L. Since L(x) is a continuum which is irreducible with respect to containing x and $L(x) \cap L$, A = L(x). Thus the partial order on X is L-continuous.

THEOREM 3.3. Let X be a compact partially ordered space such that for each $x \in X$, L(x) is a chain. Then (i) is equivalent to (ii) and (iii) implies (i):

- (i) the family \mathscr{C} of maximal chains of X is closed in 2^{x} ,
- (ii) M is closed and the partial order on X is L-continuous,
- (iii) the family of compact maximal antichains of X covers X.

Proof. By Lemma 1.4 and Lemma 3.1, L and M are closed if either (i) or (ii) holds.

- (i) implies (ii). Let x_i) be a net converging to x in X. For each i, let $m_i \in M \cap M(x_i)$ and let m be a cluster point of m_i). Then $m \in M \cap M(x)$. We may suppose m_i) converges to m. Since $\mathscr C$ is compact and the partial order on X is closed $L(m_i)$ converges to L(m). Hence $L(x_i)$ converges to L(x) and the partial order on X is L-continuous.
- (ii) implies (i). Define $f: M \to \mathscr{C}$ by letting f(m) = L(m) for each $m \in M$. Since the partial order on X is L-continuous, f is a homeomorphism of the compact space M onto \mathscr{C} . Thus \mathscr{C} is compact.
- (iii) implies (i). Let C_i be a net of members of $\mathscr C$ which converges to some $C \in 2^x$. By Lemma 1.3, C is a chain. Let $m \in M$ such that $C \subset L(m)$ and let $x \in L(m)$. Let A be a compact maximal antichain which contains x. For each i, $M(A) \cap C_i$ $\cap M$ is nonvoid. Since $L(C_i \cap M) = C_i$ is a chain $C_i \cap A$ is nonvoid. For each i let $a_i \in C_i \cap A$. Each cluster point of a_i is in $A \cap C$. Now $A \cap C \subset L(m) \cap A$.

Since $x \in L(m) \cap A$, A is an antichain and L(m) is a chain it follows that a_i) converges to x. Thus L(m) = C and $C \in \mathscr{C}$. Hence \mathscr{C} is compact.

PROPOSITION 3.4. Let X be a compact partially ordered space such that L and M are closed and for each $x \in X$, $\Gamma(x)$ is an order arc. Define $\pi: X \to M$ by letting $\pi(x) \in M \cap M(x)$ for each $x \in X$. Then π is continuous and open.

Proof. By Lemma 3.2, π is continuous.

Let $x \in X$ and let U be a neighbourhood of x. Then $\langle U, X \rangle$ is a neighbourhood of $\Gamma(x)$ in 2^x . By Theorem 3.2 there exists a neighbourhood V of $\pi(x)$ such that $\Gamma(V) = \langle U, X \rangle$. Then $V \cap M$ is a neighbourhood of $\pi(x)$ in M such that $V \cap M = \pi(U)$. Thus π is open.

PROPOSITION 3.5. Let X be a compact partially ordered space such that for each $x \in X$, $\Gamma(x)$ is a real order arc. If L and M are compact and first countable (resp. separable) then X is first countable (resp. separable).

Proof. Use Theorem 3.2 and a result of Nachbin [4, p. 48].

In Theorem 2.6 we gave sufficient conditions for a metric partially ordered space to be covered by compact maximal antichains. We would like to extend this result to nonmetric partially ordered spaces.

PROBLEM 1. Let X be a compact partially ordered space such that L and M are closed and for each $x \in X$, $\Gamma(x)$ is a nondegenerate order arc. Does each point of X lie in a compact maximal antichain?

PROBLEM 2. Let X be a compact partially ordered space such that L and M are compact metric spaces. Is X metric if, for each $x \in X$, $\Gamma(x)$ is a separable order arc? In view of Theorem 2.10 it suffices to consider the case where M is homeomorphic to Cantor's ternary set.

The answer to Problem 2 is affirmative in case there exists a family \mathscr{F} of compact maximal antichains such that $X \subset \bigcup \mathscr{F}$ and \mathscr{F} is a compact subset of 2^x . L. Mohler and L. E. Ward, Jr. suggested the following example. It shows that the conditions on X can not be relaxed.

EXAMPLE 3.6. Let X be the set $[0, 1] \times [0, 1]$ with the topology of the comb space. A basic open neighbourhood of (x, 0) has the form

$$(U \times [0, 1]) \setminus \bigcup_{i=1}^{n} (\{x_i\} \times [y_i, z_i])$$

where U is a neighbourhood of x in [0, 1], $x_i \in U$, $0 < y_i \le z_i \le 1$ and n is a nonnegative integer. If $0 < y \le 1$ a basic open neighbourhood of (x, y) has the form $\{x\} \times V$ where V is a neighbourhood of y in [0, 1]. Give X the partial order $(m, x) \le (n, y)$ if and only if m = n and $x \le y$. Then X is a compact partially ordered space such that $L = [0, 1] \times \{0\}$ and $M = [0, 1] \times \{1\}$. Notice that X has all the properties of the space in Problem 2 except that M is not closed. However, X is not separable.

4. Compact maximal antichains. We shall define lattice operations on the space of compact maximal antichains of a compact partially ordered space X.

DEFINITION 4.1. A topological lattice is a Hausdorff space X with two continuous, associative, commutative and idempotent operations \vee and \wedge such that for $x, y \in X$, $x \vee (y \wedge x) = x \wedge (y \vee x) = x$ and the conditions $x \wedge y = y$ and $x \vee y = x$ are equivalent.

DEFINITION 4.2. If X is a compact partially ordered space let $\mathscr{A}(X)$ denote the space of compact maximal antichains of X with its relative topology as a subset of 2^{X} . For $C, D \in \mathscr{A}(X)$ let

$$C \lor D = \{x \in C \cup D \mid x \text{ is maximal in } C \cup D\}$$

and let

$$C \wedge D = \{x \in C \cup D \mid x \text{ is minimal in } C \cup D\}.$$

LEMMA 4.3. Let X be a compact partially ordered space. If $C, D \in \mathcal{A}(X)$ then $C \lor D$ and $C \land D$ are compact antichains.

Proof. Clearly $C \lor D$ and $C \land D$ are antichains. Let x_i be a net in $C \lor D$ which converges to $x \in X$. We may suppose that for each i, $x_i \in C$. Since C is closed $x \in C$. For each i, let $y_i \in D \cap L(x_i)$ and let y be a cluster point of y_i). Then $y \in D \cap L(x)$. Since C and D are antichains x is maximal in $C \cup D$. Thus $x \in C \lor D$ and $C \lor D$ is closed. Similarly $C \land D$ is closed.

LEMMA 4.4. Let X be a compact partially ordered space such that L and M are closed and for each $x \in X$, $\Gamma(x)$ is connected. If C, $D \in \mathcal{A}(X)$ then $C \vee D$ and $C \wedge D$ are in $\mathcal{A}(X)$.

Proof. Let $x \in X$. By Koch's theorem there exists an order arc T such that $x \in T$ and T meets both L and M. By Lemma 2.5 there exists $y \in T \cap C$ and $z \in T \cap D$. Since T is a chain $x \in \Gamma(C \vee D) \cap \Gamma(C \wedge D)$. By Lemma 4.3, $C \wedge D$ and $C \vee D$ are antichains hence $C \wedge D$ and $C \vee D$ are in $\mathscr{A}(X)$.

THEOREM 4.5. Let X be a compact partially ordered space such that L and M are closed and for each $x \in X$, $\Gamma(x)$ is connected. Then $\mathcal{A}(X)$ with operations \wedge and \vee is a topological lattice with minimal element L and maximal element M. If X is metric then $\mathcal{A}(X)$ is arcwise connected.

Proof. By Lemma 4.4 \wedge and \vee are operations on $\mathscr{A}(X)$. The proof that \vee and \wedge are associative operations is similar to the proof of Lemma 4.4.

Let C_i and D_i be nets in $\mathscr{A}(X)$ which converge to C and D respectively. Let H be a cluster point of the net $C_i \lor D_i$ in 2^X and let $x \in H$. For each i let $x_i \in C_i \lor D_i$ such that x_i converges to x. Then $x \in C \cup D$. If $x \in C \cap D$ then $x \in C \lor D$. If $x \in D \setminus C$ then eventually $x_i \in D_i \setminus C_i$. Thus $x_i \in M(C_i)$ eventually. Since C_i converges to C and the partial order on X is closed $x \in M(C)$. Thus $x \in C \lor D$ and $H \subset C \lor D$. For each i and each maximal order arc $T(C_i \lor D_i) \cap T$ is nonvoid by Lemma 2.5. It follows that $H \cap T$ is nonvoid. Hence H is a maximal antichain. Since $H \subset C \lor D$,

 $H = C \lor D$ and \lor is a continuous operation on $\mathscr{A}(X)$. Similarly \land is a continuous operation on $\mathscr{A}(X)$.

If X is metric then by Theorem 2.6 there exists an arc in $\mathscr{A}(X)$ which contains the maximal and minimal elements of $\mathscr{A}(X)$. It follows that $\mathscr{A}(X)$ is arcwise connected.

5. A characterization of the 2-cell.

THEOREM 5.1. Let X be a nondegenerate metric partially ordered space. Suppose there exists a map $f: [0, 1] \rightarrow 2^x$ such that

- (i) for each $a \in [0, 1]$, $f(a) \in \mathcal{M}(X)$,
- (ii) if $a \le b \le c$ in [0, 1] then $f(a) \cap f(c) \subseteq f(b)$ and
- (iii) $X \subset \bigcup f([0, 1])$.

If X has no cutpoints then X is homeomorphic to the closed 2-cell.

Proof. It is well known (see Franklin [9]) that the relation $R: [0, 1] \to X$ defined by letting R(a) = f(a) for each $a \in [0, 1]$ is upper semicontinuous. Since R(a) is compact and connected for each $a \in [0, 1]$, X = R([0, 1]) is compact and connected by [9].

If $a \in [0, 1]$ such that $f(0) \neq f(a) \neq f(1)$ then f(a) separates X since $f([0, a]) \cap f([a, 1]) = f(a)$. Since X has no cutpoints it follows that if f(a) is a point then either f(a) = f(0) or f(a) = f(1).

The set $\{f(a) \mid a \in [0, 1]\}$ is a compact family of maximal chains of X such that $X \subset \bigcup \{f(a) \mid a \in [0, 1]\}$. By Lemma 1.4, L and M are compact.

Consider the function π : $[0, 1] \to M$ defined by letting $\pi(a) \in f(a) \cap M$ for each $a \in [0, 1]$. Let a_i be a net in [0, 1] which converges to a. For each $i, f(a_i) \subset L(\pi(a_i))$. If z is a cluster point of $\pi(a_i)$ then $f(a) \subset L(z)$ since the partial order on X is closed. Now $\pi(a) \in f(a)$ so $\pi(a) \in L(z)$. Since $\pi(a) \in M$ it follows that $z = \pi(a)$ and π is continuous. By condition (ii) of the hypotheses π is monotone. Hence, M is either a point or an arc. Similarly, L is either a point or an arc. Thus, $f(0) \cup f(1) \cup M \cup L$ is a simple closed curve.

Suppose $L \cap M$ is empty. By Theorem 2.9 there exists a map $g: P([0, 1]) \to X$ such that for each $a \in [0, 1]$, g maps $\{a\} \times [0, 1]$ homeomorphically onto f(a).

For each $x \in X$, $g^{-1}(x)$ is a compact antichain. Also, for each $x \in X$

$${a \in [0, 1] \mid x \in f(a)}$$

is connected by condition (ii) of the hypotheses. It is now easy to check that g is monotone. By a Theorem of R. L. Moore (Whyburn [8, p. 173]) X is a 2-cell.

If $L \cap M$ is nonvoid then we must go back to the methods used in Case 2 of Theorem 2.6 to obtain a monotone map of P([0, 1]) onto X. The argument is completely straightforward.

COROLLARY 5.2. Let X be a nondegenerate compact metric space with no cutpoints. Then X is a closed 2-cell if and only if X admits a closed partial order such that

- (i) M is an arc,
- (ii) L is closed,
- (iii) for each $m \in M$, L(m) is an order arc,
- (iv) L(m) separates X for each cutpoint m of M.

Proof. The partially ordered space P([0, 1]) is a partially ordered space on the 2-cell which satisfies all the hypotheses of the theorem.

If X has a partial order satisfying the hypotheses of the theorem let h be a homeomorphism of [0, 1] onto M and define $f: [0, 1] \to 2^x$ by letting f(a) = L(h(a)) for each $a \in [0, 1]$. By Theorem 3.2, f is continuous. Condition (iv) of the hypotheses implies that if $a \le b \le c$ in [0, 1] then $f(a) \cap f(c) \subseteq f(b)$. Hence Theorem 5.1 applies.

REFERENCES

- 1. J. H. Carruth, A note on partially ordered compacta, Pacific J. Math. 24 (1968), 229-231. MR 36 #5902.
 - 2. J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136.
- 3. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 13, 54.
 - 4. L. Nachbin, Topology and order, Van Nostrand, Princeton, N. J., 1965. MR 36 #2125.
- 5. L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144-161. MR 16, 59.
- 6. ——, Concerning Koch's theorem on the existence of arcs, Pacific J. Math. 15 (1965), 347-355. MR 31 #6206.
- 7. L. E. Ward, Jr. and E. D. Tymchatyn, On three problems of S. P. Franklin and A. D. Wallace, Colloq. Math. 20 (1969), 229-236.
- 8. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86.
- 9. S. P. Franklin, Concerning continuous relations, Dissertation, University of California, Los Angeles, Calif., 1963.

University of Saskatchewan, Saskatoon, Canada University of Oregon, Eugene, Oregon